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SUMMARY 
The simultaneous measurement of the rate of heat production and 

of at least one other physical signal generated by an oscillating 
chemical or biochemical reaction is a promising tool for the elu- 
cidation of the underlying reaction steps and their correlation in 
time. An essential prerequisite for the interpretation of the ex- 
periments is the deconvolution or '*desmearingn of the recorded 
signals. The usefulness of Fast Fourier Transform (FFT) algorithms 
for the deconvolution is shown by numerical simulations. Various 
systematic errors superimposed on the 1W_-ue88 signal by the time 
resolution of the apparatus in use are analyzed as well as sta- 
tistical noise and serially correlated errors in the measured 
data. A short description of a robust and easy to use software 
package of the deconvolution algorithm is given. The package is 
written in FORTRAN 77 and executable on personal computers and 
mainframes. 

INTRODUCTION 

Measurements of time dependent processes in systems of finite 

size are biased by systematic errors originating from the inevi- 

table inertia of the mass of the system under investigation. These 

inertia effects are very pronounced in devices for the detection 

of heat or electrode potentials, since diffusion processes play a 

crucial role. On the other hand most optical methods, for example 

the absorption of light, may be considered as instantaneous tech- 

niques for monitoring chemical or biochemical processes. The si- 

multaneous measurement of the rate of heat production with a mi- 

crocalorimeter and of at least one other physical signal of an os- 

cillating chemical or biochemical reaction is a promising tool for 

the elucidation of the underlying reaction steps and their corre- 

lation in time (ref. 1,2). The interpretation of the measured sig- 

nals, especially the comparison of the shape of the waves and the 

estimation of phase relations, are not straightforward due to the 

different time behaviour of the signal detectors resulting in a 

"smearingI of the 8Wzue88 signal generated in the sample under in- 

vestigation. The W8smearing18 effect must also be taken into account 
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for the calculation of the amount of heat having evolved within 

finite time intervals for instance during one period. Only the 

total heat produced is time independent and therefore independent 

of the inertia of the calorimeter. 

From these arguments it becomes clear, that the type of experi- 

ments under consideration are useful only if the ntrue81 signals 

can be extracted from the measured data by mathematical 

l'desmearing'@ or deconvolution techniques (ref. 3). 

In the following chapter, the basic mathematical formulas for 

the deconvolution by Fourier transform are given and the special 

arrangement of the data for the use of discrete Fast Fourier 

Transforms (FFTs) is described. A computer program is introduced 

which performs the whole data analysis. The capabilities and limi- 

tations of the deconvolution technique applied to periodic signals 

are demonstrated in the second half of the paper. 

NUMERICAL METHODS 

A signal recorded by means of any time dependent physical in- 

strument results from the interplay of at least two sources, the 

"true" signal produced by the specimen under investigation and its 

broadening by the measuring device. The most significant impact of 

the apparatus arises from its inertia to follow the variation of 

the l%rue** signal instantaneously. The inertia of a device is 

quantitatively described by its response to a signal with pulse- 

like characteristic having a pulse width of the order zero. The 

response curve r(t) is called the relaxation function, response 

function, or transfer function of the device. 

The functional relation between the Vrue81 and the recorded 

signal is given by the following integral expression (ref. 4). 

+CC 

q(t) = s r( t -t’)f (t’)dt’ 
-co 

(1) 

This formula means that the measured signal q(t) is a convo- 

lution of the Vrue8* signal f(t) with the response function r(t). 

In other words, the signal Q at time t is the integral of all 

events having taken place at times t' before t and diminished 

according to the relaxation of r(t). Equation (1) is a correct 

description of the physics of the measurement, provided that the 

normalized response function is independent of the amplitude of 
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the input pulse. An apparatus with this property is called a line- 

ar device. In the following, we presuppose that the response func- 

tion is normalized and in addition it should be noted that by de- 

finition r(t)=0 for t ( 0 holds. 

For a pulse-like response function, r(t) can be approximated by 

Dirac's delta function. In this case it is found from equation (1) 

that the recorded signal is identical with the V@truell signal. 

Sophisticated deconvolution techniques must be applied if the 

response of the apparatus has significant effect on the physical 

signal one is interested in. Three numerical approaches have been 

considered in literature. 1) The "directV1 method by matrix inver- 

sion, 2) several iterative procedures, and 3) the deconvolution by 

Fourier transforms. We discuss only the latter one. A discussion 

about advantages and disadvantages of the various methods may be 

found in (ref. 5-8). 

The deconvolution by Fourier transforms is based on the,_convo- 

lution theorem for an equation as of type (1). This theorem states 

that the Fourier transform of the convolution integral is given by 

the product of the Fourier transform of each function (ref.' 4,S). 

The application of this theorem to equation (1) results in (2). 

3(lp(t)) = J( r(t)) - J(f (t)) 

3is a short form of the Fourier integral, the transition from 

the time domain into the frequency domain. Its definition together 

with the inverse operation is given by following equations 

J( y(t)) = ij (w) =im,-zniut y(t)& 

a-‘(@(co)) =+fi2niut ijj(&-jo 
-CO 

The calculation of f(t) is straightforward since with 

(3) 

J(f(t)) = J(fp(t))/a(r(t)) (4) 
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the inverse Fourier transform of (4) unveils the true signal 

f(t) = 3-l (3(q(t))/J(rW)) 

This elegant solution of the deconvolution problem has some 

drawbacks. The most obvious one is the large computation time for 

(5) 

the Fourier transforms. This problem can be minimized by the app- 

lication of Fast Fourier Transform (FFT) techniques (ref. 9,10, 

11). The only prerequisites for the applicability of FFTs are that 

the data points are equidistant in time and that their number is a 

power of two. More serious are the implicit properties of Fourier 

transforms, the amplification of noise and the sensitivity with 

respect to cut-off errors. Noise reduction may be achieved by 

smoothing techniques, for example by splines (ref. 11,121 or pofy- 

nomes (ref. 13); cut-off effects can be reduced by suitable 

extensions of the measured functions. 
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Fig. 
tion 

1 The measured function q(t) (below) and the response func- 
r(t) (above) are shown by solid lines. The dashed lines dis- 
the extensions resulting in an identical time interval for 
curves. 

The conversion of the outlined mathematical procedure into an 

easy-to-use and robust numerical software package needs some care- 

fully chosen extensions of the measured data sets for the mini- 

mization of cut-off errors. 
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Assume that q(t) is measured in the interval 0 < t< tmax and 

r(t) in the interval 0 < t ( tr . Both functions have to be adapted 
for FFT to a time interval of identical length t,,, +t, as shown in 

Fig. 1. The resolution function can smoothly be extended beyond t 

if r(t) has been measured over such a long time interval that 

r(t,)= r(O)= 0 holds. In this case r(t)= 0 is a rational extension 

for t z t,. Cut-off effects in the deconvoluted data at t=O can be 

minimized by extending q(t) into the negative time range at least 

of length -t,. The only appropriate choice for 0 values in this 

interval is y(t)= cp(0) for 4, < t 4 0. The various steps of the 

whole deconvolution procedure are summarized in the block diagram 

of Fig. 2. 

Smoothing cf the Smoothing of the 
resolution function maasured data 

r k) 
Oht”t, (IL ~(:lt,,, 

1 1 
extension of r(t) extension of p(t) 

r It) -0 @I -q(O) 
trLtLItmax-tminl-tr tmifWr 

tmin&t*O 

I 1 
Cliscretization of the 
two functions at N 
equally spaced time 

points, where 
N- 2" and nck4 

I Fast Fourier Transform rof r and? I 

Corn utation 
fIt~-'f-*I1Pf~ttl~/~tr~tlfl 
yields the deconvoluted 

signal. 

L ----- ------1 
~&volution of fftf with r(t) and , 

I 
comparison with the 

measured function v,(t). I 
L_------------ -I 

Fig. 2 Block diagram of the processing procedures 
volution by Fast Fourier Transform. 

for data decon- 

The last step, the convolution of f(t) and r(t) by numerical 

integration, has been included for a final control of the errors 

which may have been accumulated during the various numerical pro- 

cedures. A graphic presentation of the measured data q(t) and 
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their numerically recalculated counterpart immediately gives an 

impression of the accuracy of the deconvolution and the precision 

of the underlying measurements of f(t) as well as of r(t). The 

procedure shown in Fig. 2 has been transposed into a FORTRAN 77 

compatible software package executable on mainframes and on 

personal computers equipped with a coprocessor for floating point 

operations. The performance is in the time range of seconds (see 

table 1 below). 

NUMERICAL SIMULATIONS 

The capabilities and limitations of the deconvolution procedure 

explained in the last chapter are favourably demonstrated by func- 

tions which can be handled analytically. It is obvious that perio- 

dic behaviour is modelled by sine or cosine and the response func- 

tion of the apparatus by a sum of exponentials as given in (6). 

r(t) = C T Aiebi’ t>o; r(t)=0 for t<O (6) 

with 

c= I*, 
g I 

i=l bi 

(7) 

The constant C follows from the normalization condition . An addi- 

tional ctnstraint for the amplitudes turns out from the condition 

r(t=O)= CAi=O. 

The c&&olution of the response function (6) with a periodic 

signal with frequency w f(t)=sin(ot) results in 

rpw = 2: Ai 
i=l b2+W2 

( wcos(ot)-bisin(wt)) (8) 

For the numerical work we have chosen a response function with 

n=2, bl=0.5/min, and b, =lO/min for the time constants and 

A,=-1.0/I-9 A2 =1.0/1.9 for the amplitudes, which are uniquely de- 

find for the case n=2 when b1 and b, are given. b, determines the 

relaxation of the response curve with a relaxation time 

l/b,=2 min. The response function with the just given parameters 
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is referred to as the two-exponential response function in the 

following. 
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Fig. 3 Numerical deconvolution of the test functions y(t) (solid 
line in lower parts of the graphs) with the two-exponential 
response function r(t) (solid line in the upper parts of the 
graphs). The dashed lines show the expected results: (A) 
f(t)=sin(0.5 t) and (B) f(t)=sin(3.0 t). Its zeros are marked by 
(+) * 



Fig. 3 shows two simulations with o=O.S/min (Fig. 3A) and 

0=3.O/min (Fig. 3B). The periodic solid curves are the 1*measured11 

data F(t) simulated with (8) at 750 time points and then fitted 

by splines (ref. 11) for the selection of 512 data points eguidi- 

stant in time. The response function in the upper part of the 

graphs are generated with 300 data points by the same procedure 

and formula (6). The dashed lines in Fig. 3 represent the func- 

tions f(t) after numerical deconvolution using 512 points for the 

FFTs. The amplitude and the phase are recovered precisely for both 

frequencies. Since the agreement between the calculated and the 

assumed functions is so close, the theoretical curves are not 

drawn in the figures. It should be noted that the deviations at 

the boundaries of the curves are more pronounced for the higher 

frequency in Fig. 3B, where the ratio of the time parameters w/b, 

is 6 compared to I in Fig. 3A. 

Fig. 4 and 5 summarize the filter properties of the inertia for 

an apparatus with a given response function, taking the signal 

frequency 0 as the independent variable. The ratio of amplitudes 

in Fig. 4 is defined as the quotient of the measured and the 

Vrue" amplitude. This ratio is less than or equal to 1 by defini- 

tion. It approaches 1 for very slow processes and zero when the 

period of the process is close to or even higher than the relax- 

ation time of the response function. The curve marked by squares 

in the middle of the three lines is calculated with the simulated 

response function. The other two curves are determined with measu- 

red response functions having relaxation times of 2 minutes (A) 

or 2.3 minutes (e), respectively (see for instance figure 2 in 

ref. 1). The phase shift subjected to the Vrue@* signal by the 

time response of the apparatus is given in Fig. 5. In this graph, 

the data calculated with the simulated two-exponential response 

curve deviate from the curve calculated with the measured response 

functions. The different trends of the curves for o larger than 

l/min indicate, that the experimental response curves contain more 

than one exponential relaxation term for larger times. 

All these calculations are performed with error-free data, 

simulating a by no means realistic situation. The introduction of 

statistical noise has no significant effect since the noise is 

almost completely eliminated by the spline fits at the beginning 

of the data evalution procedure. It is conceivable that indepen- 

dent distortions of the measured data are very unprobable, due to 
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Fig. 4 Ratio of amplitudes as a function of the signal frequency 
0. The ratio of amplitudes is the quotient of the amplitudes of 
the lVmeasuredl' data p(t) and of the Vrue18 signal f(t). The de- 
convolution is performed with the two-exponential (~3) and two 
experimential response functions (e ) (A). 
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Fig. 5 Phase shift between the 11measured88 data q(t) and the 
VrueV1 signal f(t) as a function of the signal frequency w, 
calculated for three response functions. The deconvolution is 
performed with the two-exponential (B) and two experimential 
response functions (e ) (A ). 
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the inertia of the system. Such systems produce correlated errors, 

since a pulse-like fluctuation in the experimental sample appears 

as a long lasting deformation of the recorded data y(t) reflec- 

ting the response function. 

I 
-i 

0 IO 20 30 40 50 GO 70 00 

tiae/Binutes 

Fig. 6 Numerical deconvolution of the function v(t) superimposed 
with a correlated error simulated with a standard deviation 
cr=O.OX (solid line). The dashed line shows the function cp(t) 
after deconvolution with the two-exponential response curve. 

Fig. 6 shows a simulation with w=O.S/min and an superimposed 

error ej with a strong serial correlation defind at each data 

point j by 

i+9 
"j =C Ei (9) 

i=j 

~~ is a normally distributed error with standard deviation 

cT=O.Ol. The outcome of the deconvolution with the two-exponential 

response function is given by the dashed line. The phase shift is 

recovered as in the error free simulation in Fig. 3A, but the 

bumps in the dashed curve introduce a great uncertainty in the 

estimates of amplitudes and even more in the shape of the waves. 

That serial correlation are significant in real experiments be- 

comes obvious by comparing Figs. 6 and 7. The solid line in Fig. 7 

exhibits the periodic heat production accompanied with sugar meta- 

bolism in a cytopfasmic medium extracted from yeast (ref. 14,15). 

The dashed line presents the deconvoluted @*true** signal extracted 
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from the measured data by deconvolution with the experimentally 

determind response function having a relaxation time of 2.3 

minutes. The curve shows bumps similar to the corresponding curve 

in Fig. 6. 

0 20 40 GO 

time/minutes 

Fig. 7 Rate of heat production measured on a 
lizing cytoplasmic extract from yeast (solid 
ponding deconvoluted signal (dashed line). 

periodically metabo- 
line) and the corres- 

Correlated errors are very crucial for the determination of the 

response function. A good estimate of this function may be found 

from the average of a set of identical experiments with a pulse- 

like reaction. 

The numerical simulations have been executed on a PERKIN-ELMER 

3230 minicomputer. The time required for the whole computation 

cycle shown in Fig. 2 adds up from the following contributions : 

1) time for the spline fits, 2) time for the FFTs and the complex 

division, and 3) time for the convolution. 

For each data set, the spline fit was calculated only once and 

then stored on disk for later use. The computation of a fit for a 

typical data set with 700 data points took 30 seconds. Computing 

times for the FFTs and the convolution are listed in table 1 as a 

function of N, the number of points used. The computing time 

increases with order N log(N) for FFT and with order N2 for the 

convolution. 
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TABLE 1 
Computation times for the calculation of Fast Fourier Transforms 
and convolutions as a function of data points N. The time is given 
in seconds. 

N FFTs convolution 

1024 3.7 38.2 
512 1.7 9.6 
256 0.8 2.5 
128 0.34 0.63 
64 0.16 0.17 

On a personal computer the time figures have to be multiplied by a 

factor of about 10. 

CONCLUSIONS 

In this paper we have outlined the capabilities and limitations 

of a deconvolution procedure for experimental data recorded as a 

time series of a periodically evolving process. Careful deconvolu- 

tion procedures are an essential prerequisite for the correct in- 

terpretation of calorimetric experiments undertaken for the eluci- 

dation of reaction mechanisms exhibiting a periodic behaviour. The 

whole procedure for the extraction of the "true" signal from the 

measured data is assembled in a robust and easy-to-use software 

package. This fact should lead to a standard procedure for syste- 

matic investigations of periodic reactions, as for example the Be- 

lousov-Zhabotinskii reaction (ref. 16) or the glycolytic pathway 

(ref. 14,151. The latter one seems especially promising, since it 

contains well known reactions steps catalyzed by enzymes. The re- 

action enthalpies of the steps are known or at least good estima- 

tes are available in the literature (ref. 17,18). Another simp- 

lifying circumstance is the fact that the enthalpies of the most 

endothermic step, the splitting of fructose bisphosphate, and of 

the most exothermic step, the conversion of acetaldehyde into 

ethanol and COz, are by an oder of magnitude larger than the other 

steps. 

The unique advantage of the combination of calorimetry with 

other continously measurable indicators of a reaction lies in the 

fact that the rate of heat production gives a quantitative measure 

of the chemical turnover, i.e. the flux through the system. 

We thank Mrs. R. Hubner for skilled assistance during the 
preparation of the paper. 
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